Электронное моделирование в multisim

Разработанная National Instruments программная среда Multisim 12.0 & Ultiboard 12.0 это целая лаборатория схемотехнического моделирования, которая предназначена для проектирования радиоэлектронных схем и печатных плат на профессиональном уровне. Данное программное обеспечение имеет простой удобный интерфейс и позволяет с легкостью моделировать сложные принципиальные схемы и проектировать многослойные печатные платы. Multisim (рис. 1) позволяет оптимизировать свои проекты, минимизировать ошибки и снизить число итераций при разработке. В сочетании с Ultiboard (рис. 2) – программным обеспечением для проектирования топологии печатных плат, Multisim представляет собой платформу сквозного проектирования.


Рис. 1. Окно программы Multisim


Рис. 2. Окно программы Ultiboard

В последних версиях программы Multisim используются математические модули и модели компонентов SPICE. Пакет MCU позволяет включать в эмуляцию смешанной схемы определенные микроконтроллеры. Особенностью программы Multisim является наличие виртуальных измерительных приборов, имитирующих реальные аналоги. Имеющиеся в программе библиотеки включают в себя большой набор широко распространенных электронных компонентов (рис. 3). Есть возможность подключения и создания новых библиотек компонентов.


Рис. 3. Разделы компонентов основной библиотеки Multisim

Библиотеки программы содержат следующие компоненты:

  • источники напряжения и тока, заземление (источники постоянного и переменного напряжения, источники прямоугольных импульсов и сигнала через определенные промежутки времени, постоянные и переменные источники тока);
  • базовые компоненты (резистор, переменный резистор, конденсатор, переменный конденсатор, катушка индуктивности, катушка с переменной индуктивностью, трансформатор, ключи, реле, переключатели);
  • диоды (диод, стабилитрон, светодиод, диодный мостик, диод Шоттки, симистор);
  • транзисторы (биполярные, полевые, МОП-транзисторы);
  • аналоговые компоненты (операционный, дифференциальный, инвертирующий усилитель, компаратор);
  • цифровые микросхемы ТТЛ;
  • цифровые микросхемы КМОП;
  • микроконтроллеры (8051, 8052, PIC16F84, PIC16F84A – с возможностью программирования) и микросхемы памяти RAM, ROM;
  • подключаемые внешние устройства (дисплеи, терминалы, клавиатура);
  • цифровые устройства (логические элементы, микроконтроллеры, микропроцессоры, микросхемы памяти, триггеры, регистры, счетчики, мультиплексоры, микросхемы цифровой обработки сигналов, программируемые логические интегральные схемы);
  • гибридные элементы (таймер, мультивибратор, аналогово-цифровой преобразователь);
  • звуковые и световые индикаторы (семисегментный индикатор, цветные пробники логического уровня, зуммер, лампа накаливания);
  • разъемы.

Широкий набор приборов позволяет производить измерения различных величин, задавать входные воздействия, строить графики. Все приборы изображаются в виде, максимально приближенном к реальному, поэтому работать с ними просто и удобно. В программе используется большой набор виртуальных инструментов (рис. 4) для проведения измерений: мультиметр, функциональный генератор, ваттметр, двух- и четырехканальный осциллограф, характериограф-IV, плоттер Боде, частотомер, генератор слов, логический анализатор, логический преобразователь, измеритель нелинейных искажений, анализатор спектра, панорамный анализатор, токовый пробник, функциональный генератор Agilent, мультиметр Agilent, осциллограф Agilent, осциллограф Tektronix, измерительный пробник, приборы LabVIEW:

  • измеритель характеристик полупроводниковых приборов (BJT Analyzer);
  • измеритель комплексных сопротивлений (Impedance Meter);
  • микрофон (Microphone);
  • динамик (Speaker);
  • анализатор сигналов (Signal Analyzer);
  • генератор сигналов (Signal Generator);
  • потоковый генератор сигналов (Streaming Signal Generator).
Читайте также:  Как сделать маленькую бутылку


Рис. 4. Виртуальные измерительные приборы программы Multisim

Виртуальные приборы Multisim – это программные модели контрольно-измерительных приборов, которые соответствуют реальным приборам. Использование виртуальных приборов в Multisim – это простой и понятный метод взаимодействия со схемой, почти не отличающийся от традиционного при тестировании или создании радиоэлектронного устройства, самый простой способ проверить поведение разработанной схемы. Результаты моделирования можно вывести на принтер или передать в текстовый или графический редактор для их дальнейшей обработки. Необходимым условием для эффективного использования Multisim является понимание алгоритмов, реализованных в программе и знание принципов построения моделей электронных компонентов. Неправильное применение моделей компонентов, настройка и использование вычислительных алгоритмов могут привести к получению ошибочных результатов моделирования.

Программа Ultiboard используется для разработки печатных плат, выполнения определенных функций CAD систем и подготовки результатов проектирования к производству. В комплекте с Multisim, Ultiboard является мощным средством для проектирования электронных устройств, имеющим набор команд позволяющих создавать и редактировать контактные площадки и компоненты электрорадиоэлементов печатной платы. Программа Ultiboard обладает возможностью автоматизированного размещения компонентов на плате (рис. 5) а также ручной и автоматической трассировки (рис. 6), и предоставляет разработчикам возможность работать в ее среде как в системе 3D моделирования, в результате чего печатная плата и ее компоненты будут отображены в реальном виде. Средства Ultiboard позволяют формировать трехмерные модели компонентов из плоских графических данных из библиотек топологических посадочных мест, разрабатывать собственные модели посредством импорта сложных контуров компонентов из механических САПР, а также при помощи специального мастера.

Рис. 5. Импортированный из Multisim проект


Рис. 6. Цветные маркеры в местах возникновения ошибок и информация об ошибках допущенных в процессе ручной трассировки

Для большинства разрабатываемых многослойных печатных плат характерно наличие внутренних полностью или частично металлизированных слоев, используемых, как правило, для подводки питания и отдельных областей металлизации на сигнальных слоях, используемых в основном для экранирования. На рисунке 7 показана разработанная в Ultiboard 3D-модель платы до и после создания слоя питания.


Рис. 7. 3D-модель платы до и после создания слоя питания

В программе Ultiboard есть возможность создания компонентов электрорадиоэлементов печатной платы, для чего используется мастер «Создатель корпуса», который предоставляет разработчику возможность создавать компоненты со штыревыми и планарными выводами. Процесс создания компонента при помощи мастера состоит из нескольких шагов, на которых разработчику будет предложено заполнить поля ввода – задать размеры контура корпуса компонента, общее число выводов, форму контактных площадок, расстояние между контактами в посадочном месте.


Рис. 8. Создание 3D-формы компонента со штыревыми выводами в Ultiboard

При помощи данного мастера разработчик имеет возможность создавать компоненты:

  • микросхем и некоторых других электрорадиоэлементов в корпусах Dual In-line Package (DIP), монтаж которых производится в отверстия печатной платы. В таких корпусах могут выпускаться различные полупроводниковые или пассивные электрорадиоэлементы (микросхемы, сборки диодов, генераторы, усилители);
  • микросхем, имеющих планарные выводы, расположенные с четырех сторон корпуса Quad Flat Package (QFP);
  • транзисторов и других полупроводниковых приборов, в том числе и микросхем (например, интегральных стабилизаторов напряжения);
  • микросхем, которые производятся в корпусах BGA/PGA.

Многие проектировщики выбрали Multisim & Ultiboard в качестве среды разработки электронных устройств благодаря наличию интерактивных компонентов, возможности контроля и снятия данных с измерительных приборов в процессе моделирования схем, а также благодаря возможности проведения измерения аналоговых и цифровых сигналов. Большим преимуществом является наличие в данной среде разработки программы проектирования топологии печатных плат.

Читайте также:  Толщина стен каркасной бани

Этой статьей начинаю освещать одну из интереснейших тем это тема компьютерного, еще говорят, схемотехнического моделирования схем различных электронных устройств.

Вообще термин моделирование электронных схем имеет много синонимов, это и эмуляция электронных схем, симуляция электронных схем и т. д. Я буду придерживаться термина «компьютерное моделирование» или моделирование схем на компьютере, не суть важно.

На сегодняшний день существуем множество компьютерных программ, которые предназначены в первую очередь для разработки различных электронных устройств и в таких программах существует одна из важных функций – эмуляция электрических схем.

Перечислю только самые известные из них:

LTSpice и множестов других программ.

Сегодня я хочу вас познакомить с программой компании National Instruments – это эмулятор схем Multisim.

Бесплатную программу Multisim с ограничениями на 50 элементов в схеме можно скачать с сайта производителя по ссылке https://lumen.ni.com/nicif/confirmation.xhtml, там же на сайте можно найти версию для учебных заведений, более расширенную по сравнению с предидущей, но тоже имеющую свои ограничения https://lumen.ni.com/nicif/us/academicevalmultisim/content.xhtml

Интерфейс программы Multisim

Начнем с изучения интерфейса программы.

Основные функциональные панели программы показаны на следующем рисунке.

Отдельный интерес представляет панель компонентов. С помощью панели компонентов осуществляется доступ к базе компонентов. При нажатии на любую из выбранных пиктограмм компонентов схем открывается окно Выбор компонента. В левой части окна осуществляется выбор необходимого компонента.

Вся база данных компонентов разделена на разделы (пассивные элементы, диоды, транзисторы, микросхемы и т. д.), а разделы на семейства (например, для диодов – это сами диоды, стабилитроны, светодиоды, тиристоры и т. д.). Надеюсь идея понятна.

Так же в окне выбора компонента можно посмотреть обозначение выбранного компонента, описание его функции, выбрать тип корпуса.

Моделирование схем в программе Multisim.

Теперь переходим непосредственно к практике. Давайте соберем простую схему в программе Multisim и заставим ее работать!

Я скачал из интернета схему мультивибратора на двух транзисторах, где в качестве нагрузки используются светодиоды.

Далее собираем ее в программе Multisim и включаем моделирование.

Можем воспользоваться измерительными приборами, например виртуальным осциллографом и посмотреть сигналы в различных точках схемы.

Мы убедились, что схема работает, на этом знакомство с программой Multisim заканчиваю, если вас заинтересовала тема моделирования схем, пишите свои вопросы в комментариях, отвечу с удовольствием.

Ну и на последок, по традиции представляю вам подробное видео по моделированию схем в программе Multisim.

Если вы еще не подписались на новые выпуски интернет журнала «Электрон», то заполняйте форму внизу страницы и получайте новые выпуски на электронную почту в формате PDF.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Электронное моделирование в Multisim (+CD) Марк Е. Хернитер

Книга представляет собой подробное руководство по моделированию электрических и электронных схем в программе Multisim компании Electronics Workbench. В ней на примерах из области электротехники и электроники демонстрируется методика построения схем и проведения различных типов анализа в программе. При описании методик приводится вид экрана компьютера после проведения каждой элементарной операции, что делает изложение весьма наглядным.

Читайте также:  Энергия voltron рсн 15000

Руководство рассчитано на широкий круг читателей — от студентов средних и высших учебных заведений до специалистов, работающих в области электротехники и электроники.

Глава 1. Редактирование базовой схемы

1.1. Запуск программы Multisim
1.2. Размещение компонентов
1.3. Исправление ошибок
1.4. Подключение компонентов
1.5. Заземление схемы „
1.6. Удаление провода при ошибочном подключении
1.7. Разметка узлов
1.8. Вывод и модификация блока заголовка (штампа)
1.9. Трехмерные компоненты
1.10. Задачи

Глава 2. Функции Postprocessor и Grapher

2.1. Создание одного графика
2.2. Создание двух графиков с кривыми
2.3. Создание трех графиков
2.4. Сохранение и загрузка страниц
2.5. Удаление объектов в программе Postprocessor
2.6. Изменение параметров графика в программе Grapher
2.7. Использование курсора
2.8. Увеличение и уменьшение масштаба
2.9. Сохранение и открытие страниц в программе Grapher
2.10. Задачи

Глава 3. Измерения на постоянном токе

3.1. Схемы с резисторами
3.2. Анализ узловых напряжений в цепях с зависимыми источниками
3.3. Ток и напряжение диода
3.4. Получение эквивалентных схем по теоремам Тевенина и Нортона
3.5. Рабочая точка транзистора
3.6. Задачи

Глава 4. Вариации на постоянном токе

4.1. Основы анализа на постоянном токе
4.2. Вольтамперная характеристика диода
4.3. Передаточные кривые на постоянном токе
4.4. Вложенный анализ DC Sweep. Характеристики биполярного транзистора BJT
4.5. Коэффицент усиления по току для BJT
4.6. Задачи

Глава 5. Анализ модуля и фазы гармонических сигналов

5.1. Измерение модуля и фазы при одной частоте
5.2. Графики Боде
5.3. Анализ коэффициента усиления усилителя
5.4. Коэффициент усиления операционного усилителя
5.5. Вариация параметров. Полоса пропускания ОУ:
5.6. Мощность переменного тока и коррекция коэффициента мощности
5.7. Измерение полного комплексного сопротивления
5.8. Задачи

Глава 6. Анализ во временной области

6.1. Использование виртуального осциллографа
6.2. Измерение фазы в емкостной схеме
6.3. Измерение фазы в индуктивной схеме
6.4. Последовательная резонансная RLC-цепь
6.5. Стабилизатор постоянного тока
6.6. Схема ограничителя на стабилитроне. Исследование с помощью SPICE Transient Analysis
6.7. Схема ограничителя на стабилитроне. Моделирование в виртуальной лаборатории
6.8. Размах напряжения на транзисторе
6.9. Интегрирующая схема на виртуальном ОУ
6.10. Триггер Шмитта на операционном усилителе
6.11. Многовариантный анализ. Скорость переключения инвертора
6.12. Вариация по температуре. Непрерывный стабилизатор
6.13. Компоненты с предельными параметрами
6.14. Задачи

Глава 7. Цифровое моделирование

7.1. Цифровые индикаторы, генераторы сигнала и инструменты
7.2. Схемы, содержащие аналоговые и цифровые модели
7.3. Моделирование схем, содержащих только цифровые компоненты
7.4. Схема с обнулением при запуске
7.5. Цифровое моделирование и задержки на логических элементах в идеальном и реальном режимах
7.6. Задачи
8. Предметный указатель

Название: Электронное моделирование в Multisim (+CD)
Автор: Марк Е. Хернитер
Издательство: ДМК Пресс
Год: 2010
Страниц: 501
Язык: русский
Формат: DjVu
Размер: 51.7 Mb

Скачать Электронное моделирование в Multisim (+CD) Марк Е. Хернитер

Добавить комментарий


Adblock detector